PatchMatch in Multi-View Stereo

Yiming Xie 2020.6.21

ETH 3D Benchmark(High Res.)

1	Method	all	high-res multi-view	indoor	outdoor
2	DeepPCF-MVS	80.84	88.10	88.56	86.73
3	DeepC-MVS_fast	79.62	86.82	86.47	87.85
4	DeepC-MVS	79.50	86.80	86.53	87.61
5	3Dnovator+	77.84	85.48	84.47	88.51
6	MG-MVS		83.41	83.45	83.28
7	3Dnovator	76.31	83.38	82.31	86.59
8	CLD-MVS		82.31	81.65	84.29
9	AP-MVS		82.00	81.11	84.69
10	MAR-MVS		81.84	80.70	85.27
11	ACMP	74.13	81.51	80.57	84.36
12	ACMM	73.20	80.78	79.84	83.58
13	AdaColmap		80.58	79.42	84.06
14	PCF-MVS	73.52	80.38	78.84	85.01
15	OpenMVS	72.83	79.77	78.33	84.09
16	TAPA-MVS	73.13	79.15	77.94	82.79
17	PLC	70.83	78.05	76.37	83.08
18	LS3D		76.95	74.82	83.37
19	F-COLMAP		76.38	74.33	82.50
20	LTVRE_ROB	69.57	76.25	74.54	81.41
21	ACMH+	68.96	76.01	74.01	82.03
22	ACMH	67.68	75.89	73.93	81.77
23	MSDG		73.36	70.99	80.49
24	COLMAP_ROB	66.92	73.01	70.41	80.81
25	OpenMVS_ROB	64.09	70.56	68.19	77.65
26	CMPMVS	51.72	70.19	68.16	76.28
27	LF4IMVS		64.02	62.19	69.50
28	PVSNet	57.27	61.67	59.27	68.85
29	FPMVS		53.68	51.64	59.81
30	ANet_high		50.57	46.10	63.99
31	Gipuma		45.18	41.86	55.16
32	PMVS	37.38	44.16	40.28	55.82
33	wuykxyi23d		39.76	33.18	59.51
34	PNet_i23d		38.26	35.42	46.79
35	MVE	26.22	30.37	25.89	43.81
36	wuyk23d		16.82	15.94	19.46
37	DeepMVS_CX				27.40
38	ITE_SJBPF				78.22

- PatchMatch
- Unknown
- Others

2020.6.20

ETH 3D Benchmark(High Res.)

Topics

- Introduction
- PatchMatch
- PatchMatch Stereo
- View Selection

Introduction

Why Does it Matter?

UAV

Robotics

Augmented Reality

Goal: Sensing 3D Geometry

Why Does it Matter?

UAV

Robotics

Augmented Reality

Goal: Sensing 3D Geometry

Why Does it Matter?

Robotics

Augmented Reality

Goal: Sensing 3D Geometry

 Among all, image-based methods provide a fast way of capturing accurate 3D content at a fraction of the cost of other approaches.

What is MVS

• Multi-view stereo (MVS): use stereo correspondence as their main cue and use more than two images to extract geometry from photographs.

What is MVS

- Multi-view stereo (MVS): use stereo correspondence as their main cue and use more than two images to extract geometry from photographs.
 - Lambertian textured surfaces.
 - Known camera parameters.

What is MVS

- Multi-view stereo (MVS): use stereo correspondence as their main cue and use more than two images to extract geometry from photographs.
 - Lambertian textured surfaces.
 - Known camera parameters.

- Input: multiple images with calibrated cameras
- Output: dense 3d representation

Credit: Y. Furukawa

Multi-view stereo: Basic idea

Look for points in space that have photo-consistency.

Multi-view stereo: Basic idea

Look for points in space that have photo-consistency.

Summary

- Why?
- capture accurate 3D geometry, and imagebased method is cheap.
- What?
- use stereo correspondence as their main cue and use more than two images to extract geometry from photographs.
- How?
- Look for points in space that have photoconsistency.

Step 1: Source view selection

Step 2: Depth-map computation

Step 3: Depth-map merging

- Step 1: Source view selection
- Step 2: Depth-map computation
- Step 3: Depth-map merging

Key steps:

- 1. How to chose source images
- 2. How to compute depth map

How to compute depth map

Compute Depth Map: Basic idea

Look for points in space that have photo-consistency.

Credit: E. Dunn

Compute Depth Map: Basic idea

Look for points in space that have photo-consistency.

Credit: E. Dunn

PatchMatch

PatchMatch

 A <u>randomized</u> algorithm for rapidly finding correspondences between image patches

PatchMatch

- Problem definition:
- Given images A and B, for each overlapping patch in image A, compute the offset to the nearest neighbor patch in image B

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

Previous Work

Time: O(nlogn)

Kd-tree with PCA

Credit: Hertzmann

Key observation one

 Law of large numbers: a non-trivial fraction of a large field of random offset assignments are likely to be good guesses

Step 1: Initialization

- Initialization with random values(or derived from prior information)
- $f(x,y) = random \ value$

Step 1: Initialization

- Initialization with random values(or derived from prior information)
- $f(x,y) = random \ value$

Key observation two: spatial coherence

- High coherence of nearest neighbors in natural images
- Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest neighbor of patch at (x+1,y)

Key observation two: spatial coherence

Credit: C. Barnes

Key observation two: spatial coherence

Credit: C. Barnes

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

Use Statistics

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

Step 2: Propagation

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor(or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

Distribution of Correspondence Vectors

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

Step 2: Propagation

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor(or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

Distribution of Correspondence Vectors

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x-1,y), f(x,y-1))$

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Try to improve offset estimate by exploiting spatial coherence with left and top neighbor (or right, bottom)
- $f(x,y) = argmin_d(f(x,y), f(x+1,y), f(x,y+1))$

C. Barnes, et. al. "PatchMatch: A randomized correspondence algorithm for structural image editing". SIGGRAPH 2009

- Avoiding local minima
- Random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

- random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

- random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

Distribution of Correspondence Vectors

Box width: w

- random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

Distribution of Correspondence Vectors

Box width: αw

- random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

Distribution of Correspondence Vectors

Box width: $\alpha^2 w$

- random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

Distribution of Correspondence Vectors

Box width: 1 pixel

- random search in the neighborhood of the best offset found so far.
- $f(x,y) = argmin_d\{candidate\ correspondence\}$

Summary

PatchMatch:

Step 1: Initialization

Step 2: Propagation

Step 3: Random Search

Summary

PatchMatch:

- Step 1: Initialization
- Step 2: Propagation
- Step 3: Random Search

key insights:

- some good patch matches can be found via random sampling.
- natural coherence in the imagery allows us to propagate such matches quickly to surrounding areas.

Image A Image B (source of patches) Random init: ¹/₄ through iter 1 End of iter 1 Iter 5 Iter 2 Credit: Barnes

Experiment:Reconstruct A using patches from B

Image A

Experiment:
Reconstruct A using patches from B

Image B (source of patches)

10-100x faster than kd-tree!

Credit: Barnes

Why does it work?

- Assume source and target images have equal size (M pixels) and that random initialization is used.
- The odds of any one location being assigned the best offset: 1 / M
- But for M pixels:
 - The odds of at least one offset being correctly assigned are quite good:

$$1 - (1 - \frac{1}{M})^M$$
 E.g. M=10e5, this is (1–0.367)

If top C nearest neighbors are enough, the odds will be $1 - (1 - \frac{C}{M})^{M}$

Figure 6: Foreshortening due to the change of viewing position and direction.

- Extend to find an approximate nearest neighbor according to a plane.
- Offset -> depth

Step 1: Initialization

Step 2: Propagation

Step 3: Random Search

M. Bleyer, et. al. "Patchmatch stereo - stereo matching with slanted support windows", BMVC 2011

M. Bleyer, et. al. "Patchmatch stereo - stereo matching with slanted support windows", BMVC 2011

- For Each Pixel
 - Assign Random Depth and Normal
- For N Iterations
 - For Each Pixel
 - Propagate Depth and Normal From Neighbor
 - Sample New Random Depth and Normal
 - Update Depth

- For Each Pixel
 - Assign Random Depth and Normal
- For N Iterations
 - For Each Pixel

Propagate Depth and Normal From Neighbor

Sample New Random Depth and Normal

Update Depth

- For Each Pixel
 - Assign Random Depth and Normal
- For N Iterations
 - For Each Pixel
 - Propagate Depth and Normal From Neighbor
 - Sample New Random Depth and Normal
 - Update Depth

Summary

- Problem Definition:
 - Finding a "good" slanted support plane at each pixel.
- The difference with vanilla PatchMatch
 - (offset) -> (depth, normal)

- Step 1: Source view selection
- Step 2: Depth-map computation
- Step 3: Depth-map merging

Key steps:

- 1. How to chose source images
- 2. How to compute depth map

• How to robustly integrate photo-consistency measurements from multiple views?

Reference image

211 Source images (only 10 are shown)

Credit: E. Dunn

Coarse visibility estimation via pose clustering

Coarse visibility estimation via pose clustering

Shared Sparse Features

Credit: Schonberger

- Fine-scale visibility estimation
- Good candidate source image?

View Selection

- Fine-scale visibility estimation
- Good candidate source image?
- Global
- -> a similar viewing direction as the target image
- -> a suitable baseline neither too short to degenerate the reconstruction accuracy nor too long to have less common coverage of the scene.

View Selection

Fine-scale visibility estimation

- Good candidate source image?
- Global
- -> a similar viewing direction as the target image
- -> a suitable baseline neither too short to degenerate the reconstruction accuracy nor too long to have less common coverage of the scene.
- $5^{\circ} < \theta < 60^{\circ}$
- $0.05d \le B \le 2d$

Pixel-Level View Selection

Source

Credit: E. Dunn

Pixel-Level View Selection

Reference

Source

Credit: E. Dunn

Pixel-Level View Selection

Reference

Source **S**

Credit: E. Dunn

Image Selection vs Depth Estimation

- visibility requires scene structure and scene structure requires visibility
- This is a chicken-and-egg problem

Credit: S. Shen

- Maximum likelihood estimation (MLE):
- Likelihood function $P(X, Z, \theta, N)$:

Images:

•
$$X = \{X^{ref}, X^{src}\}, X^{src} = \{X^m | m = 1 ... M\}$$

Depth:

•
$$\theta = \{\theta_l | l = 1 \dots L\}$$

- Normal:
 - $N = \{n_l | l = 1 ... L\}$
- Occlusion indicators:

•
$$Z = \{Z_l^m | l = 1 \dots L, m = 1 \dots M\}, Z_l^m \in \{0, 1\}$$

E. Zheng, et. al. "Patchmatch based joint view selection and depthmap estimation", CVPR 2014

J. L. Schönberger, et. al. "Pixelwise View Selection for Unstructured Multi-View Stereo", ECCV 2016

- Maximum likelihood estimation (MLE):
- Likelihood function $P(X, Z, \theta, N)$:

$$\prod_{l=1}^{L} \prod_{m=1}^{M} \left[P(Z_{l,t}^{m}|Z_{l-1,t}^{m}, Z_{l,t-1}^{m}) P(X_{l}^{m}|Z_{l}^{m}, \theta_{l}, \boldsymbol{n}_{l}) P(\theta_{l}, \boldsymbol{n}_{l}|\theta_{l}^{m}, \boldsymbol{n}_{l}^{m}) \right]$$

Images:

•
$$X = \{X^{ref}, X^{src}\}, X^{src} = \{X^m | m = 1 ... M\}$$

Depth:

•
$$\theta = \{\theta_l | l = 1 \dots L\}$$

Normal:

•
$$N = \{n_l | l = 1 ... L\}$$

Occlusion indicators:

•
$$Z = \{Z_l^m | l = 1 \dots L, m = 1 \dots M\}, Z_l^m \in \{0, 1\}$$

E. Zheng, et. al. "Patchmatch based joint view selection and depthmap estimation", CVPR 2014

J. L. Schönberger, et. al. "Pixelwise View Selection for Unstructured Multi-View Stereo", ECCV 2016

- Maximum likelihood estimation (MLE):
- Likelihood function P(X, Z, θ, N):

$$\prod_{l=1}^{L}\prod_{m=1}^{M}[P(Z_{l,t}^{m}|Z_{l-1,t}^{m},Z_{l,t-1}^{m})P(X_{l}^{m}|Z_{l}^{m},\theta_{l},\boldsymbol{n}_{l})P(\theta_{l},\boldsymbol{n}_{l}|\theta_{l}^{m},\boldsymbol{n}_{l}^{m})]$$
Photometric prior

If
$$Z_l^m=1$$
,
$$P(X_l^m|Z_l^m,\theta_l,n_l) \propto \rho_l^m(\theta_l,n_l) \quad \text{(color similarity)}$$
 If $Z_l^m=0$,
$$P(X_l^m|Z_l^m,\theta_l,n_l) = \text{uniform distribution}$$

- Maximum likelihood estimation (MLE):
- Likelihood function $P(X, Z, \theta, N)$:

$$\prod_{l=1}^{L} \prod_{m=1}^{M} [P(Z_{l,t}^{m}|Z_{l-1,t}^{m}, Z_{l,t-1}^{m})P(X_{l}^{m}|Z_{l}^{m}, \theta_{l}, \boldsymbol{n}_{l})P(\theta_{l}, \boldsymbol{n}_{l}|\theta_{l}^{m}, \boldsymbol{n}_{l}^{m})]$$

Spatial-temporary smoothness

$$P(Z_{l,t}^m|Z_{l-1,t}^m, Z_{l,t-1}^m) = P(Z_{l,t}^m|Z_{l-1,t}^m)P(Z_{l,t}^m|Z_{l,t-1}^m).$$

$$P(Z_l^m|Z_{l-1}^m) = \begin{pmatrix} \gamma & 1-\gamma \\ 1-\gamma & \gamma \end{pmatrix}.$$

$$P(Z_{l,t}^m|Z_{l,t-1}^m) = \begin{pmatrix} \lambda_t & 1-\lambda_t \\ 1-\lambda_t & \lambda_t \end{pmatrix}$$

- Maximum likelihood estimation (MLE):
- Likelihood function P(X, Z, θ, N):

$$\prod_{l=1}^L \prod_{m=1}^M [P(Z_{l,t}^m | Z_{l-1,t}^m, Z_{l,t-1}^m) P(X_l^m | Z_l^m, \theta_l, \boldsymbol{n}_l) P(\theta_l, \boldsymbol{n}_l | \theta_l^m, \boldsymbol{n}_l^m)]$$
 geometric consistency

Forward-backward reprojection error

E. Zheng, et. al. "Patchmatch based joint view selection and depthmap estimation", CVPR 2014

J. L. Schönberger, et. al. "Pixelwise View Selection for Unstructured Multi-View Stereo", ECCV 2016

Joint likelihood Estimation:

- Generalized Expectation Maximization
 - E-Step
 - ullet Infer $oldsymbol{Z}$ using variational inference
 - M-Step
 - Infer $oldsymbol{ heta}, oldsymbol{N}$ using PatchMatch sampling

Robustness of Pixel-Level Selection

Pixel-level

Baseline

Robustness of Pixel-Level Selection

E. Zheng, et. al. "Patchmatch based joint view selection and depthmap estimation", CVPR 2014

Summary

PatchMatch

- A <u>randomized</u> algorithm for rapidly finding correspondences between image patches
- Step
 - 1: Initialization
 - 2: Propagation
 - 3: Random Search

PatchMatch Stereo

- Finding a "good" slanted support plane at each pixel.
- Difference from vanilla PatchMatch
 - (offset) -> (depth, normal)

View Selection

- Coarse visibility estimation
- Fine-scale visibility estimation
- Joint Pixel-Level View Selection and Depthmap Estimation
 - Pixel-Level occlusion indicator
 - chicken-and-egg -> Generalized Expectation maximization

Thanks