PatchMatch in Multi-View Stereo

Yiming Xie
2020.6.21

Many slides adapted from E. Dunn, S. Shen, Y. Furukawa, M. Pollefeys, and others
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Topics
* Introduction
 PatchMatch

 PatchMatch Stereo

* View Selection



Introduction



Why Does it Matter?

Robotics Augmented
Reality

« Goal: Sensing 3D Geometry
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Why Does it Matter?

N
Robotics Augmented

Reality

« Goal: Sensing 3D Geometry

 Among all, image-based methods provide a fast way of
capturing accurate 3D content at a fraction of the cost of
other approaches.



What is MVS

« Multi-view stereo (MVS): use stereo correspondence
as their main cue and use more than two images to
extract geometry from photographs.
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What is MVS

« Multi-view stereo (MVS): use stereo correspondence
as their main cue and use more than two images to
extract geometry from photographs.

« Lambertian textured surfaces.
 Known camera parameters.

 Input: multiple images with
calibrated cameras
« Output: dense 3d representation

Credit: Y. Furukawa



Multi-view stereo: Basic idea

« Look for points in space that have photo-consistency.

Non photo-consistent point

Credit: Shuhan Shen



Multi-view stereo: Basic idea

« Look for points in space that have photo-consistency.

Non photo-consistent point

£ 5 4 - G
., A g st

Dense correspondence!!

— o

Credit: Shuhan Shen



Summary

Why?
capture accurate 3D geometry, and image-
based method is cheap.

What?

use stereo correspondence as their main cue
and use more than two images to extract
geometry from photographs.

How?
Look for points in space that have photo-
consistency.



Depth-map Merging Based
Approaches
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Depth-map Merging Based Approaches

Step 1: Source view selection
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Depth-map Merging Based Approaches

Step 2: Depth-map computation
=

o~

7

Credit: Shuhan Shen



Depth-map Merging Based Approaches

Step 3: Depth-map merging

Credit; Shuhan Shen



. Step 1: Source view selection

L+ Step 2: Depth-map computation )

 Step 3: Depth-map merging ﬁ

Key steps:
1.How to chose source images
2.How to compute depth map




How to compute depth map



Compute Depth Map: Basic idea

« Look for points in space that have photo-consistency.
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Compute Depth Map: Basic idea

« Look for points in space that have photo-consistency.

SQ%(P da

dz
d
ds
d \\

- N o
N ool coipiete Epipolar line
\;&i{ﬂ e

|
\I
|
|
Vo
r‘“
ol \

reference image matching image

—

Matching Cost l |

@ XVL‘—\\ './‘\.0 ., S
A

Credit; E. Dunn

» depth

x limit on high resolution images



PatchMatch



PatchMatch

* A randomized algorithm for rapidly finding
correspondences between image patches

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



PatchMatch

 Problem definition:

- Given images A and B, for each overlapping patch in image A, compute the
offset to the nearest neighbor patch in image B
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C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Previous Work
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Credit: Hertzmann



Key observation one

- Law of large numbers: a non-trivial fraction of a large field
of random offset assignments are likely to be good
guesses

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Step 1: Initialization

* Initialization with random values(or derived from prior
information)

* f(x,y) = random value

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Step 1: Initialization

* Initialization with random values(or derived from prior
information)

* f(x,y) = random value

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Key observation two: spatial coherence

* High coherence of nearest neighbors in natural images

* Nearest neighbor of patch at (x,y) should be a strong hint
for where to find nearest neighbor of patch at (x+1,y)

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Key observation two: spatial coherence

Credit: C. Barnes

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Key observation two: spatial coherence

Credit: C. Barnes

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Use Statistics

14M How this graph was made:
1. Compute NNF for collection of images
12M 2. For select pixels (x,y), compare NN offset to NN offsets
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C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Step 2: Propagation

* Try to improve offset estimate by

exploiting spatial coherence with left and Distribution of
top neighbor(or right, bottom) C""f/-"eF::‘t’Qf'sence
* fry) = argming(f(x,y), f(x = Ly), f(x,y = 1)) |

A B

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009
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Step 2: Propagation

* Try to improve offset estimate by
exploiting spatial coherence with left and Distribution of
top neighbor (or right, bottom) Co"flsepc‘t’gf'se“ce
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Step 2: Propagation

* Try to improve offset estimate by
exploiting spatial coherence with left and
top neighbor (or right, bottom)

* fOy) =argming(f(x,y), f(x —1,y), f(x,y — 1))

After propagation:
fx, y) = argmin,, { current, left, above }

Distribution of
Correspondence

I Vectors

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009




Step 2: Propagation

* Try to improve offset estimate by
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Step 2: Propagation

* Try to improve offset estimate by
exploiting spatial coherence with left and
top neighbor (or right, bottom)
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Step 2: Propagation

* Try to improve offset estimate by
exploiting spatial coherence with left and
top neighbor (or right, bottom)

* fOy) =argming(fCx,y), f(x +1,y), f(x,y + 1))

Distribution of
Correspondence
Vectors

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Step 3: Random Search

* Avoiding local minima
Distribution of

« Random search in the neighborhood C
orrespondence

of the best offset found so far. Vectors
* f(x,y) = argming{candidate correspondence} ‘ e lere——

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



Step 3: Random Search

 random search in the neighborhood

of the best offset found so far. Distribution of
- , Correspondence
* f(x,y) = argming{candidate correspondence} Vectors

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009




Step 3: Random Search

 random search in the neighborhood
of the best offset found so far. Distribution of
_ , Correspondence
* f(x,y) = argming{candidate correspondence} : Vectors

i
Box width: w




Step 3: Random Search

 random search in the neighborhood

of the best offset found so far.
* f(x,y) = argming{candidate correspondence}

Distribution of
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Vectors

i
Box width: aw




Step 3: Random Search

 random search in the neighborhood

of the best offset found so far. Distribution of
- , Correspondence
* f(x,y) = argming{candidate correspondence}  Vectors

Box width: a?w




Step 3: Random Search

 random search in the neighborhood

of the best offset found so far. Distribution of
Correspondence

‘» Vectors

* f(x,y) = argming{candidate correspondence}

Box width: 1 pixel




Step 3: Random Search

 random search in the neighborhood

of the best offset found so far. Distribution of
- , Correspondence
* f(x,y) = argming{candidate correspondence} _ Vectors

After propagation and search:
f(x, y) = argmin, { candidate correspondences }

C. Barnes, et. al. “PatchMatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009




Summary
 PatchMatch:

« Step 1: Initialization

until

[ Step 2: Propagation A > Repeat
converged

» Step 3: Random Search




Summary

 PatchMatch:

« Step 1: Initialization

until

[ Step 2: Propagation A > Repeat
converged

» Step 3: Random Search

 key insights:

some good patch matches can be found via random
sampling.
natural coherence in the imagery allows us to

propagate such matches quickly to surrounding
areas.



Experiment:
Reconstruct A using

Image A patches from B

Image B
(source of
patches)

Random init: 1/4 through iter 1

End of iter 1 Iter2 Iter5
Credit;: Barnes



Experiment:
: A Reconstruct A using
mage patches from B

Image B ‘
(source of  /
patches) <3

10-100x faster than kd-tree! ]

€ | % *

End of iter 1 Iter2 Iter5
Credit;: Barnes




Why does it work?

- Assume source and target images have equal size (M pixels) and that random
initialization is used.

 The odds of any one location being assigned the best offset: 1/ M

- But for M pixels:
« The odds of at least one offset being correctly assigned are quite good:

1
1 — (1- M)M E.g. M=10e5, this is (1— 0.367)

If top C nearest neighbors are enough, the odds willbe 1 — (1 — %)M

C. Barnes, et. al. “Patchmatch: A randomized correspondence algorithm for structural image editing”. SIGGRAPH 2009



PatchMatch Stereo



PatchMatch Stereo

Figure 6: Foreshortening due to the change
of viewing position and direction.




PatchMatch Stereo

« Extend to find an approximate nearest neighbor according to a plane.
« Offset -> depth

M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo

« Step 1: Initialization

- Step 2: Propagation Repeat .
until 5
» Step 3: Random Search = converged

W

; . Object surface
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M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo

M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo

disparities
8
Q
1l

M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo
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M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo

« For Each Pixel
« Assign Random Depth and Normal
* For N lterations
« For Each Pixel
* Propagate Depth and Normal From Neighbor
« Sample New Random Depth and Normal
« Update Depth

M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo

« For Each Pixel
« Assign Random Depth and Normal
* For N lterations
« For Each Pixel
« Propagate Depth and Normal From Neighbor
« Sample New Random Depth and Normal
« Update Depth

C

M. Bleyer, et. al. “Patchmatch stereo - stereo matching with slanted support windows”, BMVC 2011



PatchMatch Stereo

« For Each Pixel
« Assign Random Depth and Normal
* For N lterations
« For Each Pixel
« Propagate Depth and Normal From Neighbor
« Sample New Random Depth and Normal
« Update Depth

J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Summary

* Problem Definition:
* Finding a “good” slanted support
plane at each pixel.

 The difference with vanilla PatchMatch
+ (offset) -> (depth, normal)



View Selection



. Step 1: Source view selection

L+ Step 2: Depth-map computation )

 Step 3: Depth-map merging ﬁ

Key steps
1.How to chose source images
2.How to compute depth map
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View Selection

* How to robustly integrate photo-consistency
measurements from multiple views?
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Reference image

211 Source images (only 10 are shown)

Credit: E. Dunn



View Selection

« Coarse visibility estimation via pose clustering

Y. Furukawa. “Towards Internet-scale Multi-view Stereo”, CVPR 2010 Credit: Schonberger



View Selection

« Coarse visibility estimation via pose clustering

* Camera Proximity _
* Shared Sparse Features 7 .~

Y. Furukawa. “Towards Internet-scale Multi-view Stereo”, CVPR 2010 Credit: Schonberger



View Selection

* Fine-scale visibility estimation

* Good candidate source image ?



View Selection

* Fine-scale visibility estimation
* Good candidate source image ?

« Global

« -> a similar viewing direction as the target image

e -> a suitable baseline neither too short to
degenerate the reconstruction accuracy nor too
long to have less common coverage of the
scene.

Shen. “Accurate Multiple View 3D Reconstruction Using Patch Based Stereo for Large-Scale Scenes”, TIP 2013



View Selection

* Fine-scale visibility estimation
* Good candidate source image ?

 Global 6
« -> a similar viewing direction as the target image
e -> a suitable baseline neither too short to

degenerate the reconstruction accuracy nor too

long to have less common coverage of the
scene.

e 5° < 0 <60°
* 005d<B <£2d

B

Shen. “Accurate Multiple View 3D Reconstruction Using Patch Based Stereo for Large-Scale Scenes”, TIP 2013



Pixel-Level View Selection

e i

Source E

Credit; E. Dunn



Pixel-Level View Selection

Source E

Credit; E. Dunn



Pixel-Level View Selection

Source E

Credit; E. Dunn



Image Selection vs Depth Estimation

« visibility requires scene structure and scene structure requires visibility
« This is a chicken-and-egg problem

/

s . , i'
v ¢ X x o VY

~

Credit: S. Shen



Joint Pixel-Level View Selection and
Depthmap Estimation

« Maximum likelihood estimation (MLE):

 Likelihood function P(X,Z,0,N):

* Images:

« X ={X", X7} XS = (X™|m = 1.. M)
* Depth:

c 0={0)|l=1..L}
* Normal:

d N={nl|l=1L}
e Occlusion indicators:
« Z={ZMl=1..Lm=1.M},Z" €{0,1}

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014
J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Joint Pixel-Level View Selection and
Depthmap Estimation

« Maximum likelihood estimation (MLE):

 Likelihood function P(X,Z,0,N):

L M
11 11 Pz, 20 ) P2 61,m0) P (61, 7|67, mi™)]
I=1m=1
* Images:
« X ={X", X7} XS = (X™|m = 1.. M)
* Depth:
« 0={0)l=1..L)
* Normal:

d N={nl|l=1L}
e Occlusion indicators:
« Z={ZMl=1..Lm=1.M},Z" €{0,1}

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014
J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Joint Pixel-Level View Selection and
Depthmap Estimation

. Maximum likelihood estimation (MLE):

 Likelihood function P(X,Z,0,N):

L M
H H (P(Z1 212 4 211 ) P(XT | 2], 01, m0) P01, 7|0, )]
I=1m=1 \

Photome:‘ric prior

If zm =1,

P(X{™Z™, 6,,n;) < p/"(8;,n;)  (color similarity)

If Z™ =0,

P(X;™Z]", 6;,n;) = uniform distribution

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014
J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Joint Pixel-Level View Selection and
Depthmap Estimation

« Maximum likelihood estimation (MLE):
 Likelihood function P(X,Z,0,N):

L M
11 1] Pzrz . 2 ) P(XT 27, 61,m0) P(61, 10|67, m™)]
I=1m=1 | )

Spatial-temporary smoothness

P(Z\Z™ 4 21 y) = P(Z5| 2™ ) P(ZT 2T _y).-
P(Zr|zry) = (17,17).

P(Zmlzm ) = (124, '50)

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014
J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Joint Pixel-Level View Selection and
Depthmap Estimation

- Maximum likelihood estimation (MLE):

 Likelihood function P(X,Z,0,N):

L M
11 L iPz1zie, .z ) P(X 2, 61, ma) P (61, 7l 6], ™)
[=1m=1 l ]
!
geometric consistency
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ST

il

Forward-backward
reprojection error
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E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014
J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Joint Pixel-Level View Selection and
Depthmap Estimation

« Joint likelihood Estimation:

P(X.,Z, 6. N
‘ Normals
Depth
* Occlusion
Images

E step:
Image Selection

* Generalized Expectation Maximization

* E-Step
e InferZ using variational inference \ 4 j
’ M-Step M step:
* Infer @, IN using PatchMatch sampling Depth & Normal
Estimation

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014
J. L. Schénberger, et. al. “Pixelwise View Selection for Unstructured Multi-View Stereo”, ECCV 2016



Robustness of Pixel-Level Selection

Pixel-level Baseline

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014



Completeness
o

Robustness of Pixel-Level Selection

_ Joint Depth and Visibility Estimation

N

. " " X 3
Ground truth Joint Estimation

\

Planesweeping

1 2 3 B 5 6 7 8 9 10

K

Completeness: percentage of
pixels with errors less than 2 cm

K=3

E. Zheng, et. al. “Patchmatch based joint view selection and depthmap estimation”, CVPR 2014



Summary
 PatchMatch

« A randomized algorithm for rapidly finding correspondences
between image patches
- Step
* 1: Initialization
« 2: Propagation D
 3: Random Search

« PatchMatch Stereo

 Finding a “good” slanted support plane at each pixel.

 Difference from vanilla PatchMatch
* (offset) -> (depth, normal)

 View Selection

« Coarse visibility estimation
* Fine-scale visibility estimation
- Joint Pixel-Level View Selection and Depthmap Estimation
* Pixel-Level occlusion indicator
- chicken-and-egg -> Generalized Expectation maximization



Thanks



